Module wavelet.wavelets.coif4

Coiflets 4 wavelet

Expand source code
""" Coiflets 4 wavelet """


class Coiflets4:
    """
    Properties
    ----------
     near symmetric, orthogonal, biorthogonal

    All values are from http://wavelets.pybytes.com/wavelet/coif4/
    """
    __name__ = "Coiflets Wavelet 4"
    __motherWaveletLength__ = 24  # length of the mother wavelet
    __transformWaveletLength__ = 2  # minimum wavelength of input signal

    # decomposition filter
    # low-pass
    decompositionLowFilter = [
        -1.7849850030882614e-06,
        -3.2596802368833675e-06,
        3.1229875865345646e-05,
        6.233903446100713e-05,
        -0.00025997455248771324,
        -0.0005890207562443383,
        0.0012665619292989445,
        0.003751436157278457,
        -0.00565828668661072,
        -0.015211731527946259,
        0.025082261844864097,
        0.03933442712333749,
        -0.09622044203398798,
        -0.06662747426342504,
        0.4343860564914685,
        0.782238930920499,
        0.41530840703043026,
        -0.05607731331675481,
        -0.08126669968087875,
        0.026682300156053072,
        0.016068943964776348,
        -0.0073461663276420935,
        -0.0016294920126017326,
        0.0008923136685823146,
    ]

    # high-pass
    decompositionHighFilter = [
        -0.0008923136685823146,
        -0.0016294920126017326,
        0.0073461663276420935,
        0.016068943964776348,
        -0.026682300156053072,
        -0.08126669968087875,
        0.05607731331675481,
        0.41530840703043026,
        -0.782238930920499,
        0.4343860564914685,
        0.06662747426342504,
        -0.09622044203398798,
        -0.03933442712333749,
        0.025082261844864097,
        0.015211731527946259,
        -0.00565828668661072,
        -0.003751436157278457,
        0.0012665619292989445,
        0.0005890207562443383,
        -0.00025997455248771324,
        -6.233903446100713e-05,
        3.1229875865345646e-05,
        3.2596802368833675e-06,
        -1.7849850030882614e-06,
    ]

    # reconstruction filters
    # low pass
    reconstructionLowFilter = [
        0.0008923136685823146,
        -0.0016294920126017326,
        -0.0073461663276420935,
        0.016068943964776348,
        0.026682300156053072,
        -0.08126669968087875,
        -0.05607731331675481,
        0.41530840703043026,
        0.782238930920499,
        0.4343860564914685,
        -0.06662747426342504,
        -0.09622044203398798,
        0.03933442712333749,
        0.025082261844864097,
        -0.015211731527946259,
        -0.00565828668661072,
        0.003751436157278457,
        0.0012665619292989445,
        -0.0005890207562443383,
        -0.00025997455248771324,
        6.233903446100713e-05,
        3.1229875865345646e-05,
        -3.2596802368833675e-06,
        -1.7849850030882614e-06,
    ]

    # high-pass
    reconstructionHighFilter = [
        -1.7849850030882614e-06,
        3.2596802368833675e-06,
        3.1229875865345646e-05,
        -6.233903446100713e-05,
        -0.00025997455248771324,
        0.0005890207562443383,
        0.0012665619292989445,
        -0.003751436157278457,
        -0.00565828668661072,
        0.015211731527946259,
        0.025082261844864097,
        -0.03933442712333749,
        -0.09622044203398798,
        0.06662747426342504,
        0.4343860564914685,
        -0.782238930920499,
        0.41530840703043026,
        0.05607731331675481,
        -0.08126669968087875,
        -0.026682300156053072,
        0.016068943964776348,
        0.0073461663276420935,
        -0.0016294920126017326,
        -0.0008923136685823146,
    ]

Classes

class Coiflets4

Properties

near symmetric, orthogonal, biorthogonal

All values are from http://wavelets.pybytes.com/wavelet/coif4/

Expand source code
class Coiflets4:
    """
    Properties
    ----------
     near symmetric, orthogonal, biorthogonal

    All values are from http://wavelets.pybytes.com/wavelet/coif4/
    """
    __name__ = "Coiflets Wavelet 4"
    __motherWaveletLength__ = 24  # length of the mother wavelet
    __transformWaveletLength__ = 2  # minimum wavelength of input signal

    # decomposition filter
    # low-pass
    decompositionLowFilter = [
        -1.7849850030882614e-06,
        -3.2596802368833675e-06,
        3.1229875865345646e-05,
        6.233903446100713e-05,
        -0.00025997455248771324,
        -0.0005890207562443383,
        0.0012665619292989445,
        0.003751436157278457,
        -0.00565828668661072,
        -0.015211731527946259,
        0.025082261844864097,
        0.03933442712333749,
        -0.09622044203398798,
        -0.06662747426342504,
        0.4343860564914685,
        0.782238930920499,
        0.41530840703043026,
        -0.05607731331675481,
        -0.08126669968087875,
        0.026682300156053072,
        0.016068943964776348,
        -0.0073461663276420935,
        -0.0016294920126017326,
        0.0008923136685823146,
    ]

    # high-pass
    decompositionHighFilter = [
        -0.0008923136685823146,
        -0.0016294920126017326,
        0.0073461663276420935,
        0.016068943964776348,
        -0.026682300156053072,
        -0.08126669968087875,
        0.05607731331675481,
        0.41530840703043026,
        -0.782238930920499,
        0.4343860564914685,
        0.06662747426342504,
        -0.09622044203398798,
        -0.03933442712333749,
        0.025082261844864097,
        0.015211731527946259,
        -0.00565828668661072,
        -0.003751436157278457,
        0.0012665619292989445,
        0.0005890207562443383,
        -0.00025997455248771324,
        -6.233903446100713e-05,
        3.1229875865345646e-05,
        3.2596802368833675e-06,
        -1.7849850030882614e-06,
    ]

    # reconstruction filters
    # low pass
    reconstructionLowFilter = [
        0.0008923136685823146,
        -0.0016294920126017326,
        -0.0073461663276420935,
        0.016068943964776348,
        0.026682300156053072,
        -0.08126669968087875,
        -0.05607731331675481,
        0.41530840703043026,
        0.782238930920499,
        0.4343860564914685,
        -0.06662747426342504,
        -0.09622044203398798,
        0.03933442712333749,
        0.025082261844864097,
        -0.015211731527946259,
        -0.00565828668661072,
        0.003751436157278457,
        0.0012665619292989445,
        -0.0005890207562443383,
        -0.00025997455248771324,
        6.233903446100713e-05,
        3.1229875865345646e-05,
        -3.2596802368833675e-06,
        -1.7849850030882614e-06,
    ]

    # high-pass
    reconstructionHighFilter = [
        -1.7849850030882614e-06,
        3.2596802368833675e-06,
        3.1229875865345646e-05,
        -6.233903446100713e-05,
        -0.00025997455248771324,
        0.0005890207562443383,
        0.0012665619292989445,
        -0.003751436157278457,
        -0.00565828668661072,
        0.015211731527946259,
        0.025082261844864097,
        -0.03933442712333749,
        -0.09622044203398798,
        0.06662747426342504,
        0.4343860564914685,
        -0.782238930920499,
        0.41530840703043026,
        0.05607731331675481,
        -0.08126669968087875,
        -0.026682300156053072,
        0.016068943964776348,
        0.0073461663276420935,
        -0.0016294920126017326,
        -0.0008923136685823146,
    ]

Class variables

var decompositionHighFilter
var decompositionLowFilter
var reconstructionHighFilter
var reconstructionLowFilter