Module wavelet.wavelets.coif4
Coiflets 4 wavelet
Expand source code
""" Coiflets 4 wavelet """
class Coiflets4:
"""
Properties
----------
near symmetric, orthogonal, biorthogonal
All values are from http://wavelets.pybytes.com/wavelet/coif4/
"""
__name__ = "Coiflets Wavelet 4"
__motherWaveletLength__ = 24 # length of the mother wavelet
__transformWaveletLength__ = 2 # minimum wavelength of input signal
# decomposition filter
# low-pass
decompositionLowFilter = [
-1.7849850030882614e-06,
-3.2596802368833675e-06,
3.1229875865345646e-05,
6.233903446100713e-05,
-0.00025997455248771324,
-0.0005890207562443383,
0.0012665619292989445,
0.003751436157278457,
-0.00565828668661072,
-0.015211731527946259,
0.025082261844864097,
0.03933442712333749,
-0.09622044203398798,
-0.06662747426342504,
0.4343860564914685,
0.782238930920499,
0.41530840703043026,
-0.05607731331675481,
-0.08126669968087875,
0.026682300156053072,
0.016068943964776348,
-0.0073461663276420935,
-0.0016294920126017326,
0.0008923136685823146,
]
# high-pass
decompositionHighFilter = [
-0.0008923136685823146,
-0.0016294920126017326,
0.0073461663276420935,
0.016068943964776348,
-0.026682300156053072,
-0.08126669968087875,
0.05607731331675481,
0.41530840703043026,
-0.782238930920499,
0.4343860564914685,
0.06662747426342504,
-0.09622044203398798,
-0.03933442712333749,
0.025082261844864097,
0.015211731527946259,
-0.00565828668661072,
-0.003751436157278457,
0.0012665619292989445,
0.0005890207562443383,
-0.00025997455248771324,
-6.233903446100713e-05,
3.1229875865345646e-05,
3.2596802368833675e-06,
-1.7849850030882614e-06,
]
# reconstruction filters
# low pass
reconstructionLowFilter = [
0.0008923136685823146,
-0.0016294920126017326,
-0.0073461663276420935,
0.016068943964776348,
0.026682300156053072,
-0.08126669968087875,
-0.05607731331675481,
0.41530840703043026,
0.782238930920499,
0.4343860564914685,
-0.06662747426342504,
-0.09622044203398798,
0.03933442712333749,
0.025082261844864097,
-0.015211731527946259,
-0.00565828668661072,
0.003751436157278457,
0.0012665619292989445,
-0.0005890207562443383,
-0.00025997455248771324,
6.233903446100713e-05,
3.1229875865345646e-05,
-3.2596802368833675e-06,
-1.7849850030882614e-06,
]
# high-pass
reconstructionHighFilter = [
-1.7849850030882614e-06,
3.2596802368833675e-06,
3.1229875865345646e-05,
-6.233903446100713e-05,
-0.00025997455248771324,
0.0005890207562443383,
0.0012665619292989445,
-0.003751436157278457,
-0.00565828668661072,
0.015211731527946259,
0.025082261844864097,
-0.03933442712333749,
-0.09622044203398798,
0.06662747426342504,
0.4343860564914685,
-0.782238930920499,
0.41530840703043026,
0.05607731331675481,
-0.08126669968087875,
-0.026682300156053072,
0.016068943964776348,
0.0073461663276420935,
-0.0016294920126017326,
-0.0008923136685823146,
]
Classes
class Coiflets4
-
Properties
near symmetric, orthogonal, biorthogonal
All values are from http://wavelets.pybytes.com/wavelet/coif4/
Expand source code
class Coiflets4: """ Properties ---------- near symmetric, orthogonal, biorthogonal All values are from http://wavelets.pybytes.com/wavelet/coif4/ """ __name__ = "Coiflets Wavelet 4" __motherWaveletLength__ = 24 # length of the mother wavelet __transformWaveletLength__ = 2 # minimum wavelength of input signal # decomposition filter # low-pass decompositionLowFilter = [ -1.7849850030882614e-06, -3.2596802368833675e-06, 3.1229875865345646e-05, 6.233903446100713e-05, -0.00025997455248771324, -0.0005890207562443383, 0.0012665619292989445, 0.003751436157278457, -0.00565828668661072, -0.015211731527946259, 0.025082261844864097, 0.03933442712333749, -0.09622044203398798, -0.06662747426342504, 0.4343860564914685, 0.782238930920499, 0.41530840703043026, -0.05607731331675481, -0.08126669968087875, 0.026682300156053072, 0.016068943964776348, -0.0073461663276420935, -0.0016294920126017326, 0.0008923136685823146, ] # high-pass decompositionHighFilter = [ -0.0008923136685823146, -0.0016294920126017326, 0.0073461663276420935, 0.016068943964776348, -0.026682300156053072, -0.08126669968087875, 0.05607731331675481, 0.41530840703043026, -0.782238930920499, 0.4343860564914685, 0.06662747426342504, -0.09622044203398798, -0.03933442712333749, 0.025082261844864097, 0.015211731527946259, -0.00565828668661072, -0.003751436157278457, 0.0012665619292989445, 0.0005890207562443383, -0.00025997455248771324, -6.233903446100713e-05, 3.1229875865345646e-05, 3.2596802368833675e-06, -1.7849850030882614e-06, ] # reconstruction filters # low pass reconstructionLowFilter = [ 0.0008923136685823146, -0.0016294920126017326, -0.0073461663276420935, 0.016068943964776348, 0.026682300156053072, -0.08126669968087875, -0.05607731331675481, 0.41530840703043026, 0.782238930920499, 0.4343860564914685, -0.06662747426342504, -0.09622044203398798, 0.03933442712333749, 0.025082261844864097, -0.015211731527946259, -0.00565828668661072, 0.003751436157278457, 0.0012665619292989445, -0.0005890207562443383, -0.00025997455248771324, 6.233903446100713e-05, 3.1229875865345646e-05, -3.2596802368833675e-06, -1.7849850030882614e-06, ] # high-pass reconstructionHighFilter = [ -1.7849850030882614e-06, 3.2596802368833675e-06, 3.1229875865345646e-05, -6.233903446100713e-05, -0.00025997455248771324, 0.0005890207562443383, 0.0012665619292989445, -0.003751436157278457, -0.00565828668661072, 0.015211731527946259, 0.025082261844864097, -0.03933442712333749, -0.09622044203398798, 0.06662747426342504, 0.4343860564914685, -0.782238930920499, 0.41530840703043026, 0.05607731331675481, -0.08126669968087875, -0.026682300156053072, 0.016068943964776348, 0.0073461663276420935, -0.0016294920126017326, -0.0008923136685823146, ]
Class variables
var decompositionHighFilter
var decompositionLowFilter
var reconstructionHighFilter
var reconstructionLowFilter