Module wavelet.wavelets.sym12
Symlet 12 wavelet
Expand source code
""" Symlet 12 wavelet """
class Symlet12:
"""
Properties
----------
near symmetric, orthogonal, biorthogonal
All values are from http://wavelets.pybytes.com/wavelet/sym12/
"""
__name__ = "Symlet Wavelet 12"
__motherWaveletLength__ = 24 # length of the mother wavelet
__transformWaveletLength__ = 2 # minimum wavelength of input signal
# decomposition filter
# low-pass
decompositionLowFilter = [
0.00011196719424656033,
-1.1353928041541452e-05,
-0.0013497557555715387,
0.00018021409008538188,
0.007414965517654251,
-0.0014089092443297553,
-0.024220722675013445,
0.0075537806116804775,
0.04917931829966084,
-0.03584883073695439,
-0.022162306170337816,
0.39888597239022,
0.7634790977836572,
0.46274103121927235,
-0.07833262231634322,
-0.17037069723886492,
0.01530174062247884,
0.05780417944550566,
-0.0026043910313322326,
-0.014589836449234145,
0.00030764779631059454,
0.002350297614183465,
-1.8158078862617515e-05,
-0.0001790665869750869,
]
# high-pass
decompositionHighFilter = [
0.0001790665869750869,
-1.8158078862617515e-05,
-0.002350297614183465,
0.00030764779631059454,
0.014589836449234145,
-0.0026043910313322326,
-0.05780417944550566,
0.01530174062247884,
0.17037069723886492,
-0.07833262231634322,
-0.46274103121927235,
0.7634790977836572,
-0.39888597239022,
-0.022162306170337816,
0.03584883073695439,
0.04917931829966084,
-0.0075537806116804775,
-0.024220722675013445,
0.0014089092443297553,
0.007414965517654251,
-0.00018021409008538188,
-0.0013497557555715387,
1.1353928041541452e-05,
0.00011196719424656033,
]
# reconstruction filters
# low pass
reconstructionLowFilter = [
-0.0001790665869750869,
-1.8158078862617515e-05,
0.002350297614183465,
0.00030764779631059454,
-0.014589836449234145,
-0.0026043910313322326,
0.05780417944550566,
0.01530174062247884,
-0.17037069723886492,
-0.07833262231634322,
0.46274103121927235,
0.7634790977836572,
0.39888597239022,
-0.022162306170337816,
-0.03584883073695439,
0.04917931829966084,
0.0075537806116804775,
-0.024220722675013445,
-0.0014089092443297553,
0.007414965517654251,
0.00018021409008538188,
-0.0013497557555715387,
-1.1353928041541452e-05,
0.00011196719424656033,
]
# high-pass
reconstructionHighFilter = [
0.00011196719424656033,
1.1353928041541452e-05,
-0.0013497557555715387,
-0.00018021409008538188,
0.007414965517654251,
0.0014089092443297553,
-0.024220722675013445,
-0.0075537806116804775,
0.04917931829966084,
0.03584883073695439,
-0.022162306170337816,
-0.39888597239022,
0.7634790977836572,
-0.46274103121927235,
-0.07833262231634322,
0.17037069723886492,
0.01530174062247884,
-0.05780417944550566,
-0.0026043910313322326,
0.014589836449234145,
0.00030764779631059454,
-0.002350297614183465,
-1.8158078862617515e-05,
0.0001790665869750869,
]
Classes
class Symlet12
-
Properties
near symmetric, orthogonal, biorthogonal
All values are from http://wavelets.pybytes.com/wavelet/sym12/
Expand source code
class Symlet12: """ Properties ---------- near symmetric, orthogonal, biorthogonal All values are from http://wavelets.pybytes.com/wavelet/sym12/ """ __name__ = "Symlet Wavelet 12" __motherWaveletLength__ = 24 # length of the mother wavelet __transformWaveletLength__ = 2 # minimum wavelength of input signal # decomposition filter # low-pass decompositionLowFilter = [ 0.00011196719424656033, -1.1353928041541452e-05, -0.0013497557555715387, 0.00018021409008538188, 0.007414965517654251, -0.0014089092443297553, -0.024220722675013445, 0.0075537806116804775, 0.04917931829966084, -0.03584883073695439, -0.022162306170337816, 0.39888597239022, 0.7634790977836572, 0.46274103121927235, -0.07833262231634322, -0.17037069723886492, 0.01530174062247884, 0.05780417944550566, -0.0026043910313322326, -0.014589836449234145, 0.00030764779631059454, 0.002350297614183465, -1.8158078862617515e-05, -0.0001790665869750869, ] # high-pass decompositionHighFilter = [ 0.0001790665869750869, -1.8158078862617515e-05, -0.002350297614183465, 0.00030764779631059454, 0.014589836449234145, -0.0026043910313322326, -0.05780417944550566, 0.01530174062247884, 0.17037069723886492, -0.07833262231634322, -0.46274103121927235, 0.7634790977836572, -0.39888597239022, -0.022162306170337816, 0.03584883073695439, 0.04917931829966084, -0.0075537806116804775, -0.024220722675013445, 0.0014089092443297553, 0.007414965517654251, -0.00018021409008538188, -0.0013497557555715387, 1.1353928041541452e-05, 0.00011196719424656033, ] # reconstruction filters # low pass reconstructionLowFilter = [ -0.0001790665869750869, -1.8158078862617515e-05, 0.002350297614183465, 0.00030764779631059454, -0.014589836449234145, -0.0026043910313322326, 0.05780417944550566, 0.01530174062247884, -0.17037069723886492, -0.07833262231634322, 0.46274103121927235, 0.7634790977836572, 0.39888597239022, -0.022162306170337816, -0.03584883073695439, 0.04917931829966084, 0.0075537806116804775, -0.024220722675013445, -0.0014089092443297553, 0.007414965517654251, 0.00018021409008538188, -0.0013497557555715387, -1.1353928041541452e-05, 0.00011196719424656033, ] # high-pass reconstructionHighFilter = [ 0.00011196719424656033, 1.1353928041541452e-05, -0.0013497557555715387, -0.00018021409008538188, 0.007414965517654251, 0.0014089092443297553, -0.024220722675013445, -0.0075537806116804775, 0.04917931829966084, 0.03584883073695439, -0.022162306170337816, -0.39888597239022, 0.7634790977836572, -0.46274103121927235, -0.07833262231634322, 0.17037069723886492, 0.01530174062247884, -0.05780417944550566, -0.0026043910313322326, 0.014589836449234145, 0.00030764779631059454, -0.002350297614183465, -1.8158078862617515e-05, 0.0001790665869750869, ]
Class variables
var decompositionHighFilter
var decompositionLowFilter
var reconstructionHighFilter
var reconstructionLowFilter