Module wavelet.wavelets.sym13
Symlet 13 wavelet
Expand source code
""" Symlet 13 wavelet """
class Symlet13:
"""
Properties
----------
near symmetric, orthogonal, biorthogonal
All values are from http://wavelets.pybytes.com/wavelet/sym13/
"""
__name__ = "Symlet Wavelet 13"
__motherWaveletLength__ = 26 # length of the mother wavelet
__transformWaveletLength__ = 2 # minimum wavelength of input signal
# decomposition filter
# low-pass
decompositionLowFilter = [
6.820325263075319e-05,
-3.573862364868901e-05,
-0.0011360634389281183,
-0.0001709428585302221,
0.0075262253899681,
0.005296359738725025,
-0.02021676813338983,
-0.017211642726299048,
0.013862497435849205,
-0.0597506277179437,
-0.12436246075153011,
0.19770481877117801,
0.6957391505614964,
0.6445643839011856,
0.11023022302137217,
-0.14049009311363403,
0.008819757670420546,
0.09292603089913712,
0.017618296880653084,
-0.020749686325515677,
-0.0014924472742598532,
0.0056748537601224395,
0.00041326119884196064,
-0.0007213643851362283,
3.690537342319624e-05,
7.042986690694402e-05,
]
# high-pass
decompositionHighFilter = [
-7.042986690694402e-05,
3.690537342319624e-05,
0.0007213643851362283,
0.00041326119884196064,
-0.0056748537601224395,
-0.0014924472742598532,
0.020749686325515677,
0.017618296880653084,
-0.09292603089913712,
0.008819757670420546,
0.14049009311363403,
0.11023022302137217,
-0.6445643839011856,
0.6957391505614964,
-0.19770481877117801,
-0.12436246075153011,
0.0597506277179437,
0.013862497435849205,
0.017211642726299048,
-0.02021676813338983,
-0.005296359738725025,
0.0075262253899681,
0.0001709428585302221,
-0.0011360634389281183,
3.573862364868901e-05,
6.820325263075319e-05,
]
# reconstruction filters
# low pass
reconstructionLowFilter = [
7.042986690694402e-05,
3.690537342319624e-05,
-0.0007213643851362283,
0.00041326119884196064,
0.0056748537601224395,
-0.0014924472742598532,
-0.020749686325515677,
0.017618296880653084,
0.09292603089913712,
0.008819757670420546,
-0.14049009311363403,
0.11023022302137217,
0.6445643839011856,
0.6957391505614964,
0.19770481877117801,
-0.12436246075153011,
-0.0597506277179437,
0.013862497435849205,
-0.017211642726299048,
-0.02021676813338983,
0.005296359738725025,
0.0075262253899681,
-0.0001709428585302221,
-0.0011360634389281183,
-3.573862364868901e-05,
6.820325263075319e-05,
]
# high-pass
reconstructionHighFilter = [
6.820325263075319e-05,
3.573862364868901e-05,
-0.0011360634389281183,
0.0001709428585302221,
0.0075262253899681,
-0.005296359738725025,
-0.02021676813338983,
0.017211642726299048,
0.013862497435849205,
0.0597506277179437,
-0.12436246075153011,
-0.19770481877117801,
0.6957391505614964,
-0.6445643839011856,
0.11023022302137217,
0.14049009311363403,
0.008819757670420546,
-0.09292603089913712,
0.017618296880653084,
0.020749686325515677,
-0.0014924472742598532,
-0.0056748537601224395,
0.00041326119884196064,
0.0007213643851362283,
3.690537342319624e-05,
-7.042986690694402e-05,
]
Classes
class Symlet13
-
Properties
near symmetric, orthogonal, biorthogonal
All values are from http://wavelets.pybytes.com/wavelet/sym13/
Expand source code
class Symlet13: """ Properties ---------- near symmetric, orthogonal, biorthogonal All values are from http://wavelets.pybytes.com/wavelet/sym13/ """ __name__ = "Symlet Wavelet 13" __motherWaveletLength__ = 26 # length of the mother wavelet __transformWaveletLength__ = 2 # minimum wavelength of input signal # decomposition filter # low-pass decompositionLowFilter = [ 6.820325263075319e-05, -3.573862364868901e-05, -0.0011360634389281183, -0.0001709428585302221, 0.0075262253899681, 0.005296359738725025, -0.02021676813338983, -0.017211642726299048, 0.013862497435849205, -0.0597506277179437, -0.12436246075153011, 0.19770481877117801, 0.6957391505614964, 0.6445643839011856, 0.11023022302137217, -0.14049009311363403, 0.008819757670420546, 0.09292603089913712, 0.017618296880653084, -0.020749686325515677, -0.0014924472742598532, 0.0056748537601224395, 0.00041326119884196064, -0.0007213643851362283, 3.690537342319624e-05, 7.042986690694402e-05, ] # high-pass decompositionHighFilter = [ -7.042986690694402e-05, 3.690537342319624e-05, 0.0007213643851362283, 0.00041326119884196064, -0.0056748537601224395, -0.0014924472742598532, 0.020749686325515677, 0.017618296880653084, -0.09292603089913712, 0.008819757670420546, 0.14049009311363403, 0.11023022302137217, -0.6445643839011856, 0.6957391505614964, -0.19770481877117801, -0.12436246075153011, 0.0597506277179437, 0.013862497435849205, 0.017211642726299048, -0.02021676813338983, -0.005296359738725025, 0.0075262253899681, 0.0001709428585302221, -0.0011360634389281183, 3.573862364868901e-05, 6.820325263075319e-05, ] # reconstruction filters # low pass reconstructionLowFilter = [ 7.042986690694402e-05, 3.690537342319624e-05, -0.0007213643851362283, 0.00041326119884196064, 0.0056748537601224395, -0.0014924472742598532, -0.020749686325515677, 0.017618296880653084, 0.09292603089913712, 0.008819757670420546, -0.14049009311363403, 0.11023022302137217, 0.6445643839011856, 0.6957391505614964, 0.19770481877117801, -0.12436246075153011, -0.0597506277179437, 0.013862497435849205, -0.017211642726299048, -0.02021676813338983, 0.005296359738725025, 0.0075262253899681, -0.0001709428585302221, -0.0011360634389281183, -3.573862364868901e-05, 6.820325263075319e-05, ] # high-pass reconstructionHighFilter = [ 6.820325263075319e-05, 3.573862364868901e-05, -0.0011360634389281183, 0.0001709428585302221, 0.0075262253899681, -0.005296359738725025, -0.02021676813338983, 0.017211642726299048, 0.013862497435849205, 0.0597506277179437, -0.12436246075153011, -0.19770481877117801, 0.6957391505614964, -0.6445643839011856, 0.11023022302137217, 0.14049009311363403, 0.008819757670420546, -0.09292603089913712, 0.017618296880653084, 0.020749686325515677, -0.0014924472742598532, -0.0056748537601224395, 0.00041326119884196064, 0.0007213643851362283, 3.690537342319624e-05, -7.042986690694402e-05, ]
Class variables
var decompositionHighFilter
var decompositionLowFilter
var reconstructionHighFilter
var reconstructionLowFilter