Module wavelet.wavelets.sym16
Symlet 16 wavelet
Expand source code
""" Symlet 16 wavelet """
class Symlet16:
"""
Properties
----------
near symmetric, orthogonal, biorthogonal
All values are from http://wavelets.pybytes.com/wavelet/sym16/
"""
__name__ = "Symlet Wavelet 16"
__motherWaveletLength__ = 32 # length of the mother wavelet
__transformWaveletLength__ = 2 # minimum wavelength of input signal
# decomposition filter
# low-pass
decompositionLowFilter = [
6.230006701220761e-06,
-3.113556407621969e-06,
-0.00010943147929529757,
2.8078582128442894e-05,
0.0008523547108047095,
-0.0001084456223089688,
-0.0038809122526038786,
0.0007182119788317892,
0.012666731659857348,
-0.0031265171722710075,
-0.031051202843553064,
0.004869274404904607,
0.032333091610663785,
-0.06698304907021778,
-0.034574228416972504,
0.39712293362064416,
0.7565249878756971,
0.47534280601152273,
-0.054040601387606135,
-0.15959219218520598,
0.03072113906330156,
0.07803785290341991,
-0.003510275068374009,
-0.024952758046290123,
0.001359844742484172,
0.0069377611308027096,
-0.00022211647621176323,
-0.0013387206066921965,
3.656592483348223e-05,
0.00016545679579108483,
-5.396483179315242e-06,
-1.0797982104319795e-05,
]
# high-pass
decompositionHighFilter = [
1.0797982104319795e-05,
-5.396483179315242e-06,
-0.00016545679579108483,
3.656592483348223e-05,
0.0013387206066921965,
-0.00022211647621176323,
-0.0069377611308027096,
0.001359844742484172,
0.024952758046290123,
-0.003510275068374009,
-0.07803785290341991,
0.03072113906330156,
0.15959219218520598,
-0.054040601387606135,
-0.47534280601152273,
0.7565249878756971,
-0.39712293362064416,
-0.034574228416972504,
0.06698304907021778,
0.032333091610663785,
-0.004869274404904607,
-0.031051202843553064,
0.0031265171722710075,
0.012666731659857348,
-0.0007182119788317892,
-0.0038809122526038786,
0.0001084456223089688,
0.0008523547108047095,
-2.8078582128442894e-05,
-0.00010943147929529757,
3.113556407621969e-06,
6.230006701220761e-06,
]
# reconstruction filters
# low pass
reconstructionLowFilter = [
-1.0797982104319795e-05,
-5.396483179315242e-06,
0.00016545679579108483,
3.656592483348223e-05,
-0.0013387206066921965,
-0.00022211647621176323,
0.0069377611308027096,
0.001359844742484172,
-0.024952758046290123,
-0.003510275068374009,
0.07803785290341991,
0.03072113906330156,
-0.15959219218520598,
-0.054040601387606135,
0.47534280601152273,
0.7565249878756971,
0.39712293362064416,
-0.034574228416972504,
-0.06698304907021778,
0.032333091610663785,
0.004869274404904607,
-0.031051202843553064,
-0.0031265171722710075,
0.012666731659857348,
0.0007182119788317892,
-0.0038809122526038786,
-0.0001084456223089688,
0.0008523547108047095,
2.8078582128442894e-05,
-0.00010943147929529757,
-3.113556407621969e-06,
6.230006701220761e-06,
]
# high-pass
reconstructionHighFilter = [
6.230006701220761e-06,
3.113556407621969e-06,
-0.00010943147929529757,
-2.8078582128442894e-05,
0.0008523547108047095,
0.0001084456223089688,
-0.0038809122526038786,
-0.0007182119788317892,
0.012666731659857348,
0.0031265171722710075,
-0.031051202843553064,
-0.004869274404904607,
0.032333091610663785,
0.06698304907021778,
-0.034574228416972504,
-0.39712293362064416,
0.7565249878756971,
-0.47534280601152273,
-0.054040601387606135,
0.15959219218520598,
0.03072113906330156,
-0.07803785290341991,
-0.003510275068374009,
0.024952758046290123,
0.001359844742484172,
-0.0069377611308027096,
-0.00022211647621176323,
0.0013387206066921965,
3.656592483348223e-05,
-0.00016545679579108483,
-5.396483179315242e-06,
1.0797982104319795e-05,
]
Classes
class Symlet16
-
Properties
near symmetric, orthogonal, biorthogonal
All values are from http://wavelets.pybytes.com/wavelet/sym16/
Expand source code
class Symlet16: """ Properties ---------- near symmetric, orthogonal, biorthogonal All values are from http://wavelets.pybytes.com/wavelet/sym16/ """ __name__ = "Symlet Wavelet 16" __motherWaveletLength__ = 32 # length of the mother wavelet __transformWaveletLength__ = 2 # minimum wavelength of input signal # decomposition filter # low-pass decompositionLowFilter = [ 6.230006701220761e-06, -3.113556407621969e-06, -0.00010943147929529757, 2.8078582128442894e-05, 0.0008523547108047095, -0.0001084456223089688, -0.0038809122526038786, 0.0007182119788317892, 0.012666731659857348, -0.0031265171722710075, -0.031051202843553064, 0.004869274404904607, 0.032333091610663785, -0.06698304907021778, -0.034574228416972504, 0.39712293362064416, 0.7565249878756971, 0.47534280601152273, -0.054040601387606135, -0.15959219218520598, 0.03072113906330156, 0.07803785290341991, -0.003510275068374009, -0.024952758046290123, 0.001359844742484172, 0.0069377611308027096, -0.00022211647621176323, -0.0013387206066921965, 3.656592483348223e-05, 0.00016545679579108483, -5.396483179315242e-06, -1.0797982104319795e-05, ] # high-pass decompositionHighFilter = [ 1.0797982104319795e-05, -5.396483179315242e-06, -0.00016545679579108483, 3.656592483348223e-05, 0.0013387206066921965, -0.00022211647621176323, -0.0069377611308027096, 0.001359844742484172, 0.024952758046290123, -0.003510275068374009, -0.07803785290341991, 0.03072113906330156, 0.15959219218520598, -0.054040601387606135, -0.47534280601152273, 0.7565249878756971, -0.39712293362064416, -0.034574228416972504, 0.06698304907021778, 0.032333091610663785, -0.004869274404904607, -0.031051202843553064, 0.0031265171722710075, 0.012666731659857348, -0.0007182119788317892, -0.0038809122526038786, 0.0001084456223089688, 0.0008523547108047095, -2.8078582128442894e-05, -0.00010943147929529757, 3.113556407621969e-06, 6.230006701220761e-06, ] # reconstruction filters # low pass reconstructionLowFilter = [ -1.0797982104319795e-05, -5.396483179315242e-06, 0.00016545679579108483, 3.656592483348223e-05, -0.0013387206066921965, -0.00022211647621176323, 0.0069377611308027096, 0.001359844742484172, -0.024952758046290123, -0.003510275068374009, 0.07803785290341991, 0.03072113906330156, -0.15959219218520598, -0.054040601387606135, 0.47534280601152273, 0.7565249878756971, 0.39712293362064416, -0.034574228416972504, -0.06698304907021778, 0.032333091610663785, 0.004869274404904607, -0.031051202843553064, -0.0031265171722710075, 0.012666731659857348, 0.0007182119788317892, -0.0038809122526038786, -0.0001084456223089688, 0.0008523547108047095, 2.8078582128442894e-05, -0.00010943147929529757, -3.113556407621969e-06, 6.230006701220761e-06, ] # high-pass reconstructionHighFilter = [ 6.230006701220761e-06, 3.113556407621969e-06, -0.00010943147929529757, -2.8078582128442894e-05, 0.0008523547108047095, 0.0001084456223089688, -0.0038809122526038786, -0.0007182119788317892, 0.012666731659857348, 0.0031265171722710075, -0.031051202843553064, -0.004869274404904607, 0.032333091610663785, 0.06698304907021778, -0.034574228416972504, -0.39712293362064416, 0.7565249878756971, -0.47534280601152273, -0.054040601387606135, 0.15959219218520598, 0.03072113906330156, -0.07803785290341991, -0.003510275068374009, 0.024952758046290123, 0.001359844742484172, -0.0069377611308027096, -0.00022211647621176323, 0.0013387206066921965, 3.656592483348223e-05, -0.00016545679579108483, -5.396483179315242e-06, 1.0797982104319795e-05, ]
Class variables
var decompositionHighFilter
var decompositionLowFilter
var reconstructionHighFilter
var reconstructionLowFilter